

Workbook

Table of Contents

General Vector Spaces	2
Vector Spaces	
Linear Combination, Dependence and Span	
Vector Basis	
Solution Space of Homogenous SLE	10
Subspaces	12
Change of Basis	14

General Vector Spaces

Vector Spaces

Questions

Check if W is a subspace of $M_n[\mathbb{R}]$, where:

- **1)** $W = \{A \mid A = A^T\}.$
- 2) W is the set of matrices which *commute* with a given matrix B. That is, $W = \{A \mid AB = BA\}$.
- **3)** W is the set of matrices whose determinant is 0. That is, $W = \{A \mid \det A = 0\}$.
- 4) W is the set of matrices which are equal to their own square. That is, $W = \{A \mid A^2 = A\}$.
- **5)** W is the set of upper-triangular matrices.
- 6) W is the set of matrices whose product with a given matrix B is 0. That is, $W = \{A \mid AB = 0\}$.
- 7) W is the set of matrices whose trace is 0. That is, $W = \{A \mid tr(A) = 0\}$.
- 8) W is the set of matrices such that the sum of each row is 0.

Check if W is a subspace of $P_n[\mathbb{R}]$, where:

- 9) W consists of the polynomials having 4 as a root. I.e., $W = \{p(x) | p(4) = 0\}$.
- **10)** W consists of the polynomials with degree ≤ 4 . I.e., $W = \{p(x) | \deg(p) \leq 4\}$.
- **11)** W consists of the polynomials with integer coefficients.

12) W consists of the polynomials with only even powers of x in its terms.

13) W consists of the polynomials having degree n where $4 \le n \le 7$.

14) $W = \{ p(x) | p(0) = 1 \}$.

Check if W is a subspace of $F[\mathbb{R}]$, where:

- **15)** *W* consists of all even functions. I.e., $W = \{f(x) | f(x) = f(-x) \text{ for all } x \in \mathbb{R}\}$.
- **16)** W consists of all bounded functions. I.e., $W = \left\{ f(x) \mid |f(x)| \le M \text{ for all } x \in \mathbb{R}, \text{ for some } M > 0 \right\}.$
- **17)** W consists of all continuous functions.

18) W consists of all differentiable functions.

19) *W* consists of all constant functions.

20)
$$W = \left\{ f(x) \mid \int_{0}^{1} f(x) dx = 4 \text{ (assume } f \text{ is integrable)} \right\}.$$

21)
$$W = \{f(x) | f'(x) = 0 \text{ (assume } f \text{ is differentiable})\}.$$

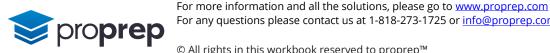
22) $W = \{f(x) | f'(x) = 1 \text{ (assume } f \text{ is differentiable})\}.$

23) $W = \{ f \mid f(x+1) = f(x) \text{ for all } x \in \mathbb{R} \}.$

Check if W is a subspace of $\mathbb{C}^3[\mathbb{R}]$:

24) Check if W is a subspace of $\mathbb{C}^3[\mathbb{R}]$, where $W = \{\langle z_1, z_2, z_3 \rangle | z_2 = \overline{z_1}, z_3 = z_1 + \overline{z_1} \}$.

25) Check if $W = \{ \langle z_1, z_2, z_3 \rangle | z_2 = \overline{z_1}, z_3 = z_1 + \overline{z_1} \}$ is a subspace of \mathbb{C}^3 (over the complex field $\mathbb C$).



- 1) Is a subspace
- 2) Is a subspace
- 3) Not a subspace
- 4) Not a subspace
- 5) Not a subspace
- 6) Not a subspace
- 7) Not a subspace
- 8) Not a subspace
- 9) Not a subspace
- 10) Not a subspace
- 11) Not a subspace
- 12) Is a subspace
- 13) Not a subspace
- 14) Not a subspace
- 15) Is a subspace
- 16) Is a subspace
- 17) Is a subspace
- 18) Is a subspace
- 19) Is a subspace
- 20) Not a subspace
- 21) Is a subspace
- **22)** Not a subspace
- 23) Is a subspace
- 24) Is a subspace
- 25) Not a subspace

Linear Combination, Dependence and Span

Questions

1) We are given the following matrices in $M_2[\mathbb{R}]$:

$$A = \begin{bmatrix} 4 & 1 \\ 1 & 5 \end{bmatrix}, B = \begin{bmatrix} 0 & 11 \\ -5 & 3 \end{bmatrix}, C = \begin{bmatrix} 2 & -5 \\ 3 & 1 \end{bmatrix}, D = \begin{bmatrix} 1 & 3 \\ -1 & 2 \end{bmatrix}$$

- a. Are these matrices linearly dependent?
- b. If so, try to write each of them as a linear combination of the rest.
- c. Does A belong to $Sp\{B, C\}$?
- **2)** We are given the following polynomials in $P_3[\mathbb{R}]$:

$$p_1(x) = 4 + x + x^2 + 5x^3$$
, $p_2(x) = 11x - 5x^2 + 3x^3$,
 $p_3(x) = 2 - 5x + 3x^2 + x^3$, $p_4(x) = 1 + 3x - x^2 + 2x^3$

- a. Are these polynomials linearly dependent?
- b. If so, try to write each of them as a linear combination of the rest.
- c. Does p_2 belong to $Sp\{p_1, p_3\}$?
- **3)** We are given the following set of vectors in \mathbb{R}^3 : $S = \{\langle c, 2, 4 \rangle, \langle 2.4, a, 2 \rangle, \langle c, b, 6 \rangle, \langle b, 2, a \rangle\}$ For which values of a, b, c is *S* linearly dependent?
- 4) We are given that the set $\{u, v, w\}$ of vectors is linearly independent in V[F].
 - a. Is the set $\{u-v, u-w, u+v-2w\}$ linearly dependent?
 - b. If so, try to write each vector in the set as a linear combination of the others.
- **5)** We are given that the set $\{u, v, w\}$ of vectors is linearly independent in V[F].
 - a. Is the set $\{u+v, v+w, w\}$ linearly dependent?

proprep

- b. If so, try to write vector in the set as a linear combination of the others.
- 6) We are given that the set $\{u, v, w\}$ of vectors is linearly independent in V[F].
 - a. Is the set $\{u+2v+3w, 4u+5v+6w, 7u+8v+9w\}$ linearly dependent?
 - b. If so, try to write each vector in the set as a linear combination of the others.

- 7) Is the set of vectors $\{\langle 1, i, i-1 \rangle, \langle i+1, i-1, -2 \rangle\}$ linearly independent in $\mathbb{C}^3[\mathbb{C}]$?
- 8) Is the set of vectors $\{\langle 1, i, i-1 \rangle, \langle i+1, i-1, -2 \rangle\}$ linearly independent in $\mathbb{C}^3[\mathbb{R}]$?

- 1) a. Yes, they're linearly dependent.
 - b. A = B + 2C, B = A 2C, $C = \frac{1}{2}A \frac{1}{2}B$, $D = \frac{1}{4}A + \frac{1}{4}B$
 - c. Yes, follows from A = B + 2C.
- 2) a. Yes, they are linearly dependent.
 - b. $p_1 = p_2 + 2p_3$, $p_2 = p_1 2p_3$, $p_3 = \frac{1}{2}p_1 \frac{1}{2}p_2$, $p_4 = \frac{1}{4}p_1 + \frac{1}{4}p_2$ c. Yes, follows from $p_2 = p_1 - 2p_3$.
- **3)** For all values a, b, c *S* linearly is dependent.
- 4) a. Yes, they are linearly dependent.x = 2y z5) a. Nob. y = 0.5x + 0.5z5) a. Nob. N/A6) a. Yes, they are linearly dependent.b. y = 0.5x + 0.5zz = 2y zb. y = 0.5x + 0.5zz = 2y x
- 7) No, the vectors are linearly dependent.
- 8) The vectors are linearly independent.

Vector Basis

Questions

1) Check if each of the following sets is a basis of $M_{2\times 2}[\mathbb{R}]$ (A.K.A $M_2[\mathbb{R}]$):

a.
$$\begin{cases} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}, \begin{bmatrix} 9 & 1 \\ 2 & 3 \end{bmatrix} \}$$

b.
$$\begin{cases} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}, \begin{bmatrix} 9 & 1 \\ 2 & 3 \end{bmatrix}, \begin{bmatrix} 5 & 6 \\ 7 & 2 \end{bmatrix}, \begin{bmatrix} 5 & 16 \\ 7 & 8 \end{bmatrix} \}$$

c.
$$\begin{cases} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \}$$

- **2)** Check if each of the following sets is a basis of $P_2[\mathbb{R}]$ (deg ≤ 2 poly):
 - a. $\{1+x, x^2+2x+3\}$
 - **b.** $\{1+x, x^2+2x+3, 2x+4x^2, x-x^2\}$
 - c. $\{1+2x+3x^2, 4+5x+6x^2, 7+8x+10x^2\}$

- 1) a. No, the three vectors can't form a basis.
 - b. No, the five vectors can't form a basis.
 - c. Yes, the four vectors do form a basis.
- 2) a. No, the two vectors can't form a basis.
 - b. No, the four vectors can't form a basis.
 - c. Yes, the three vectors do form a basis.

Solution Space of Homogenous SLE

Questions

- **1)** Let $U = \{A \in M_2[\mathbb{R}] | A = A^T\}$. Symmetric 2x2 matrices. Find a basis and the dimension of U.
- **2)** Let $U = \left\{ A \in M_2[R] \mid A \cdot \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \right\}.$

Find a basis and the dimension of \boldsymbol{U} .

3) Let $U = \left\{ p(x) \in P_3[\mathbb{R}] \mid p(1) = 0 \right\}$

Find a basis and the dimension of \boldsymbol{U} .

- **1**) $B_U = \left\{ \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \right\}$, dim U = 3.
- **2)** $U = \left\{ \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \right\}, \dim U = 0, B_U = \emptyset \text{ [empty set]}.$
- **3)** $B_U = \{ p_1(x) = -1 + x^3 \ p_2(x) = -1 + x^2, p_3(x) = -1 + x \}, \dim U = 3$

Subspaces

Questions

1) Consider the subspace of $M_2[\mathbb{R}]$ defined as follows:

$$U = span \left\{ \begin{bmatrix} 1 & 1 \\ -1 & 2 \end{bmatrix}, \begin{bmatrix} 4 & 1 \\ -1 & 1 \end{bmatrix}, \begin{bmatrix} 2 & -1 \\ 1 & -3 \end{bmatrix} \right\}$$

- 2) Consider the subspace of $P_3[\mathbb{R}]$ defined as follows: $U = span\{1+x-x^2+2x^3, 4+x-x^2+x^3, 2-x+x^2-3x^3\}$ Find a basis and the dimension of U.
- **3)** Let $\mathbb{R}_3[x]$ be the space of polynomials in x of degree ≤ 3 . Now consider a subset $U = \{p(x) = a_3x^3 + a_2x^2 + a_1x + a_0 : p(0) = 0, p(1) = 0\}$ and a subspace $V = Span(1, x^2) \subset \mathbb{R}_3[x]$. Prove that $\mathbb{R}_3[x] = U \oplus V$.
- **4)** Let *W* be a finite dimensional vector space. Let *A* and *B* be subspaces of *W*.
- a. Prove that the set $U = \{a+b; a \in A, b \in B\}$ is a subspace of W.
- b. Prove that it is the smallest subspace containing A and B.
- c. Give example subspaces A and B in which $U = A \oplus B$.

- **1**) $B_U = \left\{ \begin{bmatrix} 1 & 1 \\ -1 & 2 \end{bmatrix}, \begin{bmatrix} 0 & -3 \\ 3 & -7 \end{bmatrix} \right\}, \quad \dim U = 2$
- **2)** $B_U = \{1 + x x^2 + 2x^3, -3x + 3x^2 7x^3\}, \text{ dim } U = 2$
- 3) + 4) To view the answers to those exercises, please refer to the appropriate videos on site.

Change of Basis

Questions

- **1)** Given the following two bases of $P_2[\mathbb{R}]$: $B_1 = \{1+x, x, x+x^2\}$; and $B_2 = \{1+x^2, x+x^2, x^2\}$, and let $p(x) = a+bx+cx^2$, be a general polynomial in $P_2[\mathbb{R}]$. Compute $[p(x)]_{B_1}$, the coordinate vector of p(x) relative to B_1 and B_2 . Find the change-of-basis matrix from B_1 to B_2 .
- **2)** Given the following two bases of $M_2[\mathbb{R}]$:

$$B = \left\{ \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$
$$E = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$

Compute the coordinate vector of $X = \begin{bmatrix} x & y \\ z & t \end{bmatrix}$, relative to *B* and *E*. Find the change-of-basis matrix from *B* to *E*.

1) $[v]_{B_1} = \langle a, b - a - c, c \rangle;$ $[v]_{B_2} = \langle a, b, c - a - b \rangle,$ $[M]_{B_1}^{B_2} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 0 & -1 \\ 1 & 1 & 1 \end{bmatrix}$

2)
$$[X]_{B} = \langle x, y-x, z-y+x, t-z+y-x \rangle$$

E is the elementary or standard basis of $M_2[\mathbb{R}]: [X]_E = \langle x, y, z, t \rangle$

The change-of-basis matrix from *B* to
$$E : \begin{bmatrix} M \end{bmatrix}_{B}^{E} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 1 & -1 & 1 & 0 \\ -1 & 1 & -1 & 1 \end{bmatrix}$$

